State estimation in large-scale open channel networks using sequential Monte Carlo methods: Optimal sampling importance resampling and implicit particle filters

نویسندگان

  • Mohammad Rafiee
  • Axel Barrau
  • Alexandre M. Bayen
چکیده

[1] This article investigates the performance of Monte Carlo-based estimation methods for estimation of flow state in large-scale open channel networks. After constructing a state space model of the flow based on the Saint-Venant equations, we implement the optimal sampling importance resampling filter to perform state estimation in a case in which measurements are available at every time step. Considering a case in which measurements become available intermittently, a random-map implementation of the implicit particle filter is applied to estimate the state trajectory in the interval between the measurements. Finally, some heuristics are proposed, which are shown to improve the estimation results and lower the computational cost. In the first heuristics, considering the case in which measurements are available at every time step, we apply the implicit particle filter over time intervals of a desired size while incorporating all the available measurements over the corresponding time interval. As a second heuristic method, we introduce a maximum a posteriori (MAP) method, which does not require sampling. It will be seen, through implementation, that the MAP method provides more accurate results in the case of our application while having a smaller computational cost. All estimation methods are tested on a network of 19 tidally forced subchannels and 1 reservoir, Clifton Court Forebay, in Sacramento-San Joaquin Delta in California, and numerical results are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of Sequential Monte Carlo Methods for Parameter Estimation in General State-Space Models

Nonlinear non-Gaussian state-space models arise in numerous applications in control and signal processing. Sequential Monte Carlo (SMC) methods, also known as Particle Filters, are numerical techniques based on Importance Sampling for solving the optimal state estimation problem. The task of calibrating the state-space model is an important problem frequently faced by practitioners and the obse...

متن کامل

Independent Particle Filters

Sequential Monte Carlo methods, especially the particle filter (PF) and its various modifications, have been used effectively in dealing with stochastic dynamic systems. The standard PF samples the current state through the underlying state dynamics, then uses the current observation to evaluate the sample’s importance weight. However, there is a set of problems in which the current observation...

متن کامل

Model Based Approach for Fault Detection and Prediction Using Particle Filters

Fault detection and failure prediction for nonlinear non-Gaussian systems is an important issue both from the economic and safety point of view. Most of the fault detection techniques assume the system model to be linear and the noise to be Gaussian. These linearization assumptions tend to suffer form poor detection and imprecise prediction. Also, they may lead to false alarms which would incur...

متن کامل

Toward Practical N2 Monte Carlo: the Marginal Particle Filter

Sequential Monte Carlo techniques are useful for state estimation in non-linear, non-Gaussian dynamic models. These methods allow us to approximate the joint posterior distribution using sequential importance sampling. In this framework, the dimension of the target distribution grows with each time step, thus it is necessary to introduce some resampling steps to ensure that the estimates provid...

متن کامل

A Sequential Monte Carlo Approach to Computing Tail Probabilities in Stochastic Models

Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013